Computational Analysis of Wall Roughness Effects for Liquid Flow in Micro-Conduits
نویسندگان
چکیده
Fluid flow in microchannels or microtubes may differ in terms of wall frictional effects, and hence flow rates, when compared to macrochannels. Focusing on steady laminar fully developed flow of a liquid in different micro-conduits, relative surface roughness is captured in terms of a porous medium layer (PML) model. The new approach allows the evaluation of microfluidics variables as a function of PML characteristics, i.e., layer thickness and porosity, uncertainties in measuring hydraulic diameters as well as the inlet Reynolds number. Specifically, realistic values for the PML Darcy number, relative surface roughness, and actual flow area are taken into account to match observed friction factors in micro-conduits. The model predictions compared well with measured data sets for systems with significant relative roughness values. Although other surface effects may have influenced the experimental results as well, surface roughness is found to affect the friction factor and hence the flow parameters in relatively rough channels, e.g., those which are made of aluminum or stainless steel by way of micro-cutting processes. @DOI: 10.1115/1.1637633#
منابع مشابه
Investigating Fluid Mixing in Electro-Osmotic Flow Through Passive Micro-Mixers Having Square and Triangle Barriers
Objective: In this article, a numerical study is conducted on mixing of two fluids in the liquid phase with two different concentrations of a chemical species in the electro-osmotic flow. Methods: The base liquid is an electrolyte which flows in a two-dimensional micro-channel having electrically charged walls. Lorentz electric force, which is used as stimulating flow factor, is created by appl...
متن کاملInvestigating Fluid Mixing in Electro-Osmotic Flow Through Passive Micro-Mixers Having Square and Triangle Barriers
Objective: In this article, a numerical study is conducted on mixing of two fluids in the liquid phase with two different concentrations of a chemical species in the electro-osmotic flow. Methods: The base liquid is an electrolyte which flows in a two-dimensional micro-channel having electrically charged walls. Lorentz electric force, which is used as stimulating flow factor, is created by appl...
متن کاملSimulation of Micro-Channel and Micro-Orifice Flow Using Lattice Boltzmann Method with Langmuir Slip Model
Because of its kinetic nature and computational advantages, the Lattice Boltzmann method (LBM) has been well accepted as a useful tool to simulate micro-scale flows. The slip boundary model plays a crucial role in the accuracy of solutions for micro-channel flow simulations. The most used slip boundary condition is the Maxwell slip model. The results of Maxwell slip model are affected by the ac...
متن کاملStudy Effect of Deformation Nanochannel Wall Roughness on The Water-Copper Nano-Fluids Poiseuille Flow Behavior
In the nanochannel flow behavior with respect to expand their applications in modern systems is of utmost importance. According to the results obtained in this study, the condition of nonslip on the wall of the nanochannel is not acceptable because in the nano dimensions, slip depends on different parameters including surface roughness. In this study, keeping the side area roughness, deformatio...
متن کاملNumerical Investigation of the Influence of Sand Particle Concentration on Long Radius Elbow Erosion for Liquid-Solid Flow
Erosion caused by sand transportation in flow changing devices is a serious concern in the hydrocarbon and mineral processing industry, which entail to failure and malfunction of flow devices. In this study, computational fluid dynamics (CFD) with discrete phase models (DPM) were employed for analysis of carbon steel long radius 90-Degree elbow erosion due to the sand concentration of 2, 5 and ...
متن کامل